If it's not what You are looking for type in the equation solver your own equation and let us solve it.
.1x^2+2.4x+1.44=0
a = .1; b = 2.4; c = +1.44;
Δ = b2-4ac
Δ = 2.42-4·.1·1.44
Δ = 5.184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2.4)-\sqrt{5.184}}{2*.1}=\frac{-2.4-\sqrt{5.184}}{0.2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2.4)+\sqrt{5.184}}{2*.1}=\frac{-2.4+\sqrt{5.184}}{0.2} $
| 3(x-4)-2=11x-3(x-2) | | .1x^2+2.4x+1.44=405 | | 3^{2x-3}=60 | | x+2-5=75 | | 3x+-21-5x+8=17 | | 3(2x-3)-9x+4=2x+12 | | 43/5x=230 | | 8q^2+18q+7=0 | | 3x+(2x+1)=21 | | 3(6x-1)=2(5+2) | | 3+4(t+2)=2t-3(t+4 | | 1/3x-5=1/2x+4 | | 2m—4=16 | | 2/v+3=27 | | 10(2x+1)=20 | | -6(5n+3)=-168 | | x-1/2x-1/2=2x-5/3x^2 | | x+8=–2 | | 65+n=319 | | 4+2p=10(3÷5p-2) | | 6g-2(2-g)=2g-1 | | -4(j+4)=16 | | C(5x-2)=24 | | (x-2)=-14(x-8) | | d/9-9=-12 | | 6(x-1)=5x+4) | | n+4=3n+2 | | x=−7x+3=3x+11 | | (1545*x*14)+(1545*(1-x)*7)=12244 | | 1.6+0.1x=0.6x-5.9 | | .x=−7x+3=3x+11 | | 4z/10+5=10 |